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Abstract Fluxes of drugs across membranes are affected by the 
presence of a reactant in the membrane phase with which the drug 
can associate to form a complex. When the reaction is at equilibrium, 
the use of the simple form of Fick’s law leads to prediction of en- 
hancement of total flux. I t  is shown that inclusion of coupling 
terms by a generalized form of Fick’s law leads to an adequate 
explanation of the possibility of the total flux increasing, decreasing, 
or remaining unaffected by the complex formation reaction. 
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The subject of diffusion is one of great practical and 
theoretical importance in biological sciences (1). Diffu- 
sion is one of the chief means by which (in accordance 
with the second law of thermodynamics) materials are 
transported from one side of the membrane to the other. 
Fick’s law assumes that the rate of diffusion across a 
plane normal to the direction of transport is propor- 
tional to the concentration gradient, the proportionality 
constant being defined as the diffusion coefficient. Ac- 
cording to Fick’s law, one writes the flux of species U, 
Ju, as equal to (one-dimensional transport) : 

Ju = -Du(dCu/dx) (Eq. 1) 

where the flux is given in moles per unit area per unit 
time, concentrations are expressed in moles per unit 
volume, x is the position variable, and (dCJdx) is the 
concentration gradient denoted in the following by Cu’. 
The negative sign of Eq. 1 signifies that the materials 
transport i n  a direction of decreasing concentrations. 
Equation 1 has been very widely used in many simple 
considerations of the transport of molecules across mem- 
branes with the well-known assumption that the diffu- 
sion coefficients are constants (2). In principle, the diffu- 
sion coefficients are not constants since the frictional 
resistance that a molecule suffers is determined by in- 
teractions of all molecules present in the system. In ad- 
dition, principles of irreversible thermodynamics ( 3 )  
recognize existence of coupling between fluxes of differ- 
ent species, which may be included to modify Eq. 1 as 
(4) : 

J u  = - C DuqC,’ (Eq. 2) 

where the flux of species u is made up of contributions 
from concentration gradients of all species 7 present in 
the system, the proportionality constants being DUv. 
The summation sign in Eq. 2 runs over all species with 
nonvanishing concentration gradients present in the 
system. In principle, the elements of the diffusion coeffi- 

v 

cient matrix are dependent on concentration profiles 
and, for lack of better knowledge and to avoid messy 
mathematical equations, one adopts the simplifying 
assumption that Dug’s can be regarded as constants inde- 
pendent of x. 

While Eq. 1 is widely used in biological fields, only 
recently have the contributions of irreversible thermo- 
dynamics and their importance begun to be appreciated. 
Equation 2 is less familiar than Eq. 1 since all of us 
prefer simple expressions and are skeptical of the fruit- 
fulness of undertaking the construction of rational 
theoretical foundations, especially when the utility of 
refined attempts are not obvious. 

The objective of this paper is to illustrate the impor- 
tance of Eq. 2 in  drug transport problems as influenced 
by complex formation and off-diagonal elements. Nu- 
merous examples of experimental observations are 
available in which the presence of a complexing agent in 
the membrane phase sometimes leads to the enhance- 
ment or to the reduction or to no apparent change in 
the total flux of a substance (both in  unassociated and in 
associated complex forms) across a diffusion barrier. 

In a separate publication (5 ) ,  the effect of diffusion 
coefficients and rate constants on the flux of specified 
species was presented. The analysis was confined to the 
unassociated flux of a reactant-not to the total flux. 
In the next section, it is shown that use of Eq. 1 leads 
to results which agree with possibly limited sets of ob- 
servations, while the use of Eq. 2 leads to  results that 
are not predicted by Eq. 1. Specifically, use of Eq. 1 
along with the assumption that the reaction is at equi- 
librium in the diffusion barrier predicts the enhancement 
of total flux by the complex formation reaction in the 
presence of a complexing agent. In addition, Eq. 1 pre- 
dicts that the amount of enhancement is proportional to  
the concentration of the complexing agent present in the 
membrane phase. Use of Eq. 2 along with the assump- 
tion that the reaction is at  equilibrium predicts a more 
reasonable result: that the total flux can increase or de- 
crease or remain unaffected by the complex formation 
reaction. In addition, Eq. 2 puts an upper limit on en- 
hancement by an increase in the concentration of the 
complexing agent in  the membrane phase. 

EQUILIBRIUM CONSIDERATIONS 

Consider the simple case of transport of a substance a across a 
diffusion barrier in the presence of a substance f? of concentration 
Cp. The substance 0 is so chosen that it associates with 01 to form a 
complex y as indicated by the reaction: 

where k,  and kz are the position-independent rate constants. If the 
concentration of the reactant f? is maintained equal on both sides 
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of the barrier (membrane), the usual assumption that the reaction 
is a t  equilibrium at all locations is valid under stationary-state con- 
ditions (6). In addition, the concentration profiles of e, 0, and y are 
linear, given by the relations: 

Ca(x) = Ca(0) + U ~ X  (Eq. 4 4  

C o ( x )  = c m  (Eq. 46) 

CAx) = CY(0) + CIX (Eq. 4) 

where al and c1 are constants; C,(x) denotes the concentration of 
species v at location x .  The barrier extends from x = 0 to  x = / I .  
Equation 3 follows from the basic assumption that the reaction is a t  
equilibrium everywhere in the diffusion barrier, which leads to the 
conditions: 

J A x )  = kiCa(x)Cg(x) - k*Cy(x) = 0 (Eq. 5a) 

(Eq. 56) JR‘(x)  = ki[Ca(x)Cp’ + Cg(x)Ca’] - k?Cy’  = 0 

JR“ = ki[CaCp” + CpCa” + 2Ca’Cp’l - kiCy” 
= 0 (Eq. 5c) 

JR(x) = Jy’(x)  = -Ja ’ (x )  = --Jg’(x) 0%. 5 4  

If the fluxes are given by Eq. I ,  so that Eq. 5d is satisfied, the 
second derivatives of concentration profiles of the species vanish 
when diffusion coefficients are constants. Thus, concentration pro- 
files are linear in the diffusion barrier. Satisfying the requirements of 
Eq. 5c when the reaction is at  equilibrium requires the concentration 
gradient of one of the reactants to vanish; thus it is adopted that 
Cg‘ = 0 in Eq. 4. With these relations, it follows that the ratio of 
fluxes of complex y and reactant a in the presence of 0, when the 
reaction is at  equilibrium, is given by the expression: 

JyIJa = K(Dy/Da)Cp (Eq. 6) 

where K is the equilibrium constant equal to (kl /k2)  of the reaction; 
and D, and D ,  are the diffusion coefficients of a and 7,  respectively, 
in the membrane phase. Equation 6 is in agreement with the result 
of Eq. 29 of a previous paper (6) obtained by a different method. 
Equation 6 has the correct lirnitingproperty that as Co tends to  zero, 
the flux of complex y vanishes. However, it has the property that as 
Co tends to infinity, the ratio of flux of a transported in complexed 
form to the flux of unassociated form of a also tends to infinity. In 
addition, if one considers the total flux of a transported both a s  
free and as complex as given by the differential equation: 

.la* = Ja + J y  = -DaCa’ - D,Cy’ (Eq. 7) 

one obtains: 

Ja* = J a ( 1  + K(Dy/Da)Cp}  (Eq. 8) 

Equation 8 implies that it is always possible to enhance the total 
flux of drug Q by complexing it  with substance 0. Except for the 
limitation imposed by the solubility of 0 in the membrane phase, 
according to Eq. 8 one can enhance Ja* to any desired extent by a 
corresponding increase in C,q, It also follows from Eq. 8 that (dJa*/ 
dCg) will be positive definite unless (dJ,/dC,q) is negative and has a 
magnitude greater than JaK(Dy/Da) [ I  + K(Dy/Da)Cp]- l .  

Utilization of Eq. 2 in place of Eq. 1 for the fluxes leads, however, 
to the result, in place of Eq. 6, that: 

Jy/Ja = [Day + KCgDyy]/[Dau + KCBDUYI (Eq. 9) 

The derivation of Eq. 9 is presented in the Appendix. Unlike Eq. 
6, Eq. 9 has the limiting properties that: 

limit Co -, 0, J,/Ja = Du,/Daa (Eq. IOU) 

limit Cs -, m, Jy/.Ia = Dy?/Day (Eq. 106) 

In addition, when: 

CB = ( I / K )  [Daa - Dayl/(Dyy - Day) (Eq. Ila) 

Jy/Ja = 1 (Eq. 116) 

One may recall that the principle of minimum entropy production 

requires that the diagonal elements of the diffusion matrix be posi- 
tive definite and that the off-diagonal elements may be either positive 
or negative. The positive-definite character of KCg is preserved in 
Eq. 1 la. 

If one defines the dimensionless quantities, x ,  y ,  and r ,  by the 
relations : 

x = (Day/Daa)  (Eq. 121) 

Y = (Dyy/Dau)  (Eq. 126) 

r = Jy/Ja (Eq. 12c) 

from Eq. 9, one obtains: 

dr/dC = K ( y  - x ) / ( l  + Kcox)*  (Eq. 13) 

Equation 13  admits (dr/dCo) assuming positive, null, and negative 
values, depending on the relative magnitudes of x and y .  Thus, 
unlike Eq. 6, Eq. 9 contains an  upper bound value for r .  namely y,  
and states that the total flux of drug cannot be enhanced to in- 
finity by an increase in concentration of the reactant in the mem- 
brane phase. 

APPARENT FIRST-ORDER RATE CONSTANTS 

Similar arguments can also be advanced to the familiar evaluation 
of apparent first-order rate constants for the flux of Q in the presence 
of /3 of concentration Cp, k,* and in the absence of 8, k,. As pre- 
sented in the Appendix, following the method of Northrop and 
Anson (7), the ratio ofthe two rate constants may be evaluated as: 

ka*:ka = 1 + K(D,/Da)Co (Eq. 14) 

when Eq. 1 is used for the flux expressions. Equation I?,  which is 
obtained for quasistationary-state conditions, bears close similarity 
to Eq. 6. 

On the other hand, if one utilizes Eq. 2, in the presence of f l  in 
the barrier, when the reaction is at  equilibrium, one has the differ- 
ential equation: 

dQa*/dr = -(A/h)SICa(0) - C d r ) ]  (Eq. 15a) 

S = [Daa + Day + K C d D a y  + Dyy)l (Eq. 156) 

Following the procedure of Northrop and Anson, one has the 
expressions for the apparent first-order rate constants as: 

Ku = [(VI + V2)A/hViVzJ[Dau + KDayCgl (Eq. 160) 

Ku* = I(VI + Vz)A/hV,V~l[Daa + Day 
+ KCidDa, + Dyy)1 (Eq. 166) 

The ratio of (Ka*/Ka)  now remains finite for large values of Cg. 
This ratio can increase, decrease, or remain unaltered, depending 
on the sign and relative magnitude of D,, in comparison with 
other terms. In Eqs. 15 and 16, A is the surface area of the diffusion 
barrier, and VI and V2 are the volumes of solutions on the two sides 
of  the barrier; Qu*(r) is the amount of substance transported a t  
time t, both as unassociated and as complex y. 

CONCLUSIONS 

In theoretical studies of drug absorption and transport as in- 
fluenced by a complex forming agent, it is probably important to 
include terms to represent coupling bet ween fluxes of different 
species as given in Eq. 2. The simple form of Fick’s law is inade- 
quate to explain the possibility of the total flux of a drug a increas- 
ing, decreasing, or remaining unaffected by the presence of a com- 
plexing substance in the membrane phase. An alternative explana- 
tion involving distinct equilibrium constants for the reaction in 
aqueous and membrane phase was suggestcd by Hayton er d. (8). 

APPENDIX 

In a previous paper ( 6 ) ,  a nonlinear differential equation for a 
function G(x)  was derived, and its solution was obtained (Eqs. 18 
and 41 of Reference 6) when coupling between fluxes of different 
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species was ignored. Inclusion of coupling terms by the use of Eq. 
2 in place of Eq. 1 also leads to a similar differential equation for the 
function G(x) related to the reaction rate profile J R ( x t v i z .  : 

G” = NaG + MG2 + SGX $- FIX’ 
+ RX + F3 = JR(x) (Eq. 1 7 ~ )  

(Eq. 176) 

(Eq. 17c) 

(Eq. 17e) 

(Eq. 17f) 

(Eq. 17g) 

(Eq. 17h) 

(Eq. 17i) 

G‘(x)  = I ( x ) ;  I ’ ( x )  = JR(x);  (RaqI = IDUVI-~ (Eq. l7j) 

The solution of Eqs. 17a-17j enables one to compute the reaction 
rate profile from a knowledge of rate constants, elements of the dif- 
fusion matrix, and concentrations at boundaries when coupling 
between fluxes is to be included in a manner similar to that out- 
lined in Reference 5. In Eqs. 17a-l7j, the index u can refer to 
a, B,  or y. Ha and Qa are integration constants independent of the 
position variable. N is the reciprocal of relaxation length, character- 
istic of the system (analogous to 7 of peferences 5 and 6 )  when COU- 
pling between fluxes is included. Rsq’s are the elements of the resis- 
tance coefficient matrix which is the inverse of the matrix of diffusion 
coefficients. The constants Fl, F2, and Fa have similar meanings to 
A, B, and JR(O) of Eq. 18 of Reference 6. Ha, Hg, and H, have dimen- 
sions cf concentrations. M and S play the roles of p and u. Thus, 
when the elements of the diffusion coefficient matrix are constants 
and independent of the position variable, computation of the func- 
tion G(x) and the reaction rate profile, as well as concentration 
profiles, from a knowledge of boundary concentrations and rate 
constants in the inhomogeneous membrane phase is feasible, except 
for more computation tediousness than that presented in Reference 
5 .  Thus, use of Eq. 2 in place of  Eq. 1 also leads to solution of the 
problem and, in particular, requires linear concentration profiles 
for the species a, p, and y participating in the reaction when the re- 
action is at equilibrium. When the reaction is at equilibrium, the 
solution of Eq. 17a is of the simple form: 

(Eq. 18a) 

MI = - (Ta/Pa) or - (Ts/Pp). (Eq. 186) 

This result is similar to the result of Eq. 24b of Reference 6.  When 
one chooses that MI equals -(Tp/Pp), one has: 

G(x) = Mo +MIX 

CS’ = 0 (Eq. 19a) 

(Eq. 196) 

CY’ = (POT, - PYTs)/PB (Eq. 19c) 

Therefore, from Eq. 19 it follows that when Eq. 2 is utilized for 
fluxes and reaction is a t  equilibrium in the membrane phase, validity 
of Eq. 5 leads to Eq. 4. 

Ca’ = (POT, - PaTB)/PB 

Equation 9 results from the equations: 

Ja = -Daaa~ - Da+1 (Eq. 204 

J ,  = -Da,al - Dy-,cl (Eq. 20b) 

C I  = KCpa, (Eq. 2Oc) 

As long as concentration profiles are linear, a, = [Ca(0) - C,(h)]/h. 
To obtain ka*, for example, one integrates the expression (1): 

(dQa*/dt) = -(DaA/h)[l  + K(Dy/Da)Cpl 
X [(Qa’ - Qa(t))/Vl - {ear’ - Q a ( t ) l / ~ z l  (Eq. 21) 

with the condition that Qa(t) = 0 when t = 0. QaI and QaI* are 
time-independent initial amounts of cz in solutions I and 11, respec- 
tively, sandwiching the membrane. If one desires to introduce 
partition coefficients, one obtains: 

ka* = {(K + V Z ) / V I V Z ) ( D ~ A E ~ / ~ )  
X [ I  + K(~’ , /Da)EjKpI  (Eq. 2 h )  

EaCa(0) = Ca’ = (Qa’IVI) (Eq.22b) 

EpCS(0) = Cp’ (Eq. 22c) 

REFERENCES 

(1) M. H. Jacobs, “Diffusion Processes,” Springer-Verlag, New 

(2 )  A. Suzuki, W. I. Higuchi, and N. F. H. Ho, J .  Pharm. Sci., 

(3) A. Katchalsky and P. Curran, “Irreversible Therrnody- 

(4) L. Onsager, Ann. N .Y .  Acad. Sci., 46,241(1945). 
( 5 )  V. S .  Vaidhyanathan, J, Pharm. Sci., 61,894(1972). 
(6 )  Ibid., 60, 886(1971). 
(7 )  J. H. Northrop and M. L. Anson, Ebenda, 12, 543(1929). 
( 8 )  W. Hayton, D. E. Guttman, and G. Levy, J.  Pharm. Sci., 61, 

York, N. Y., 1967. 

59,644( 1970). 

namics,” Harvard University Press, 1967. 

356( 1972). 

ACKNOWLEDGMENTS AND ADDRESSES 

Received September 27, 1971, from the Deparrments of Phar- 
rnaceutics and Biophysical Sciences, School of Pharmacy and Center 
for Theoretical Biology, Sfate University of New York at Buffalo, 
Amherst, NY 14226 

Accepted for publication July 21, 1972. 

Vol. 61, No. 12, December 1972 2003 


